van der Schaar Lab

ICML 2021 tutorial: Synthetic healthcare data generation and assessment

This ICML tutorial, entitled “Synthetic Healthcare Data Generation and Assessment: Challenges, Methods, and Impact on Machine Learning,” was given by Mihaela van der Schaar and Ahmed Alaa on July 19, 2021.

If you’d like to learn more about our lab’s research in the area of synthetic data generation and evaluation, you can find a full overview here.

Also, consider watching our Inspiration Exchange engagement series and registering to join upcoming sessions.

Other useful links:
– Our lab’s publications
– Mihaela van der Schaar on Twitter and LinkedIn

Mihaela van der Schaar

Mihaela van der Schaar is the John Humphrey Plummer Professor of Machine Learning, Artificial Intelligence and Medicine at the University of Cambridge and a Fellow at The Alan Turing Institute in London.

Mihaela has received numerous awards, including the Oon Prize on Preventative Medicine from the University of Cambridge (2018), a National Science Foundation CAREER Award (2004), 3 IBM Faculty Awards, the IBM Exploratory Stream Analytics Innovation Award, the Philips Make a Difference Award and several best paper awards, including the IEEE Darlington Award.

In 2019, she was identified by National Endowment for Science, Technology and the Arts as the most-cited female AI researcher in the UK. She was also elected as a 2019 “Star in Computer Networking and Communications” by N²Women. Her research expertise span signal and image processing, communication networks, network science, multimedia, game theory, distributed systems, machine learning and AI.

Mihaela’s research focus is on machine learning, AI and operations research for healthcare and medicine.

Ahmed Alaa

Ahmed M. Alaa is a Postdoctoral Scholar at the ECE Department, University of California, Los Angeles (UCLA), and an affiliated Postdoctoral Researcher at the Department of Applied Mathematics and Theoretical Physics, University of Cambridge.

His primary research focus has been on causal inference, automated machine learning, uncertainty quantification and time-series analysis.

He has published papers in several leading machine learning conferences including NeurIPS, ICML, ICLR and AISTATS.