Improving Individual Learning through Performance Tracking

Mihaela van der Schaar
University of Oxford
Alan Turing Institute

Joint work with Jie Xu (U Miami)
Personalized Education

• Trend in education: larger and larger classes
 - physical classrooms
 - MOOCs

• Unsatisfactory because students are heterogeneous
 - heterogeneous backgrounds & abilities
 - heterogeneous styles of learning
 - heterogeneous goals

=> Personalization
 - maintain engagement
 - improve learning

• Our approach: electronically personalized interactive environment (EPIE) for each student

 => “as if” one mentor for every student
EPIE

Discover Relationships Among Courses (Prerequisites)
Degree Recommendation
Course Recommendation
Curriculum Design
Student Tracking
Admission Policies
Discover Mentors
Personalized Computerized Tutoring
Predict Dropout

http://medianetlab.ee.ucla.edu/EduAdvance
Some facts

• **Students do not graduate on time!**
 • Only 50 out of 580+ public 4-year institutions in the US have on-time graduate rates greater than 50%

• **Time is money**
 • 1 extra year of a public 4-year college = $22,826 in year 2014

• **Student loan debt > a trillion dollars**
 • More than USA’s combined credit card and auto load debts!

• System that can *continuously* track students’ performance and *accurately predict* their future performance

• *Timely* identification of students unlikely to graduate on time (and/or with a decent GPA)

• Enables timely interventions, course recommendations etc.
Challenges

• Students heterogeneity
 • In backgrounds, chosen areas (majors), selected courses and course sequences
 • How to handle heterogeneous student data?

• Not all courses are created “equal”
 • How to discover the underlying relationships existing among courses and use this for student tracking and course recommendations?

• Sequential prediction problem
 • Continuous tracking of student learning and student performance
 • How to incorporate the evolution of student progress into performance prediction?
Model

Student i

- **Static features**: background $\theta_i \in \Theta$
 - High school GPA, SAT scores etc.
- **Dynamic features**:
 - x_i^t - performance/grades at the end of term t
 - $x_i^1, x_i^2, \ldots, x_i^t$ quantifies the student’s performance across time
Goal

• **Predict final cumulative GPA after each term** t

$$\overline{GPA}_i^t = \frac{\sum_{j \in \bar{S}^t} c(j)x_i(j) + \sum_{j \in J \setminus \bar{S}^t} c(j)\hat{x}_i(j)}{\sum_{j \in J} c(j)}$$

- J: set of all courses
- \bar{S}^t: set of courses completed by term t
- $c(j)$: course credit
- $x_i(j)$: grade for completed courses
- $\hat{x}_i(j)$: predicted grade for uncompleted courses

• **Related objective:** predict the grade for each uncompleted course
Proposed solution: hierarchical approach

Base layer

• A set of base (local) predictors H^t implemented using different prediction algorithms
• Each base (local) predictor $h \in H^t$ outputs

$$z_{h,i}^t = h(\theta_i, x_i^t)$$
Proposed solution: hierarchical approach

Ensemble layer

- One ensemble predictor f^t for each term t
- Each f^t *synthesizes* output \hat{y}_{i}^{t-1} of previous ensemble predictors & base predictors $z_{h,i}^t$ and *outputs* \hat{y}_i^t
Design questions

• How to construct the base predictors?
 - Customize to grade prediction

• How to construct the ensemble predictors?
 - Consider temporal correlation
Learning Base Predictors

• An important question when training h^t: how to construct the input feature space
 • Using all courses increases complexity and adds noise

• Idea: learn the courses that are most relevant to the course for which we need to issue a prediction
Learning Relevant Courses

- A matrix X of size $I \times J$
 - Rows represent students
 - Columns represent courses

- We aim to find course clusters by factorizing $X = U^T V$
 - U is the compressed grade matrix of size $K \times I$
 - V is the course-cluster matrix of size $K \times J$
 - K is the number of course clusters that we try to find
Challenge

• Student grade matrix X can be sparse since it is constructed using data from multiple study areas and students only take a subset of courses

• Difficult non-convex optimization problem - cannot be solved using standard SVD implementations

• Use **probabilistic matrix factorization** method in [R. Salakhutdinov and A. Mnih, NIPS 2011]
Learning Relevant Courses

• Once U and V are found
 • Method 1: course j is assigned to a single cluster k with the highest value among all possible course clusters
 \[k(j) = \arg \max_k V_{k,j} \]

 • Method 2: course j belongs to cluster k if $V_{k,j} > \bar{v}$, where \bar{v} is a predefined threshold value.

• For term t base predictor h^t
 • only relevant courses that have been taken by term t are used for training h^t
Learning Ensemble Predictors

• A stochastic setting
 • Students arrive in sequence \(i = 1, 2, \ldots \)
 • Suitable for both offline training and online updating

• Students are assigned to clusters based on static feature \(\theta_i \)

• In each term \(t \)
 • Each base predictor \(h^t \in H^t \) makes a prediction \(z^t_{h,i} = h^t(\theta_i, \tilde{x}_i^t) \)
 • \(\tilde{x}_i^t \) is performance state restricted to the relevant courses
 • A total number of \(t \times H \) prediction results by term \(t \)

• Goal: synthesize base predictions to output final prediction
Some Possible Synthesis Methods

• **Directly** utilizing all past information

 $f_1^1 \rightarrow f_2 \rightarrow \ldots \rightarrow f_{t-1} \rightarrow f_t$

 \[\mathcal{H}_1 \rightarrow \mathcal{H}_2 \rightarrow \ldots \rightarrow \mathcal{H}_{t-1} \rightarrow \mathcal{H}_t \]

 - # of inputs at term t
 - $t \times H$
 - Large when t is large
 - Treat info equally

• **Progressively** utilizing past information

 $f_1^1 \rightarrow f_2 \rightarrow \ldots \rightarrow f_{t-1} \rightarrow f_t$

 \[\mathcal{H}_1 \rightarrow \mathcal{H}_2 \rightarrow \ldots \rightarrow \mathcal{H}_{t-1} \rightarrow \mathcal{H}_t \]

 - $H + 1$
 - Constant, independent of t
 - Automatically discounts old info
Progressive Prediction

Exponentially weighted average forecaster

- $w_i(h^t)$: weight for base predictor h^t
- $v_i(f^t)$: weight for ensemble predictor f^t
- Final prediction: $\hat{y}_i^t = \frac{\sum_{h \in H_t} w_i(h) z_{i,h}^t + v_i(f^{t-1}) \hat{y}_{i}^{t-1}}{\sum_{h \in H_t} w_i(h) + v_i(f^{t-1})}$
Progressive Prediction

Exponentially weighted average forecaster

- Weights are updated according to their cumulative prediction loss
 \[w_{i+1}(h^t) = \exp(-\eta_i L_i(h^t)) \]
- Cumulative prediction loss: \(L_n(h) = \sum_{i=1}^n l(z_{i,h}, y_i) \)
 \[v_{i+1}^{t-1}(f^{t-1}) = \exp(-\eta_i L_i(f^{t-1})) \]
- Cumulative prediction loss: \(L_n(f^{t-1}) = \sum_{i=1}^n l(\hat{y}_i^{t-1}, y_i) \)
Performance

Learning regret up to student n

$\text{Reg}^t(n) = L_n(f^t) - L^*_n^t$

$L^*_n^t$ is best local prediction performance in hindsight

Theorem:

Regret is sublinear in n

$\text{Reg}^t(n) < O(\sqrt{n})$

Corollary:

$\lim_{n \to \infty} \frac{1}{n} \text{Reg}^t(n) \to 0$: asymptotically optimal
Performance

• The direct method has an expected regret bound

\[E[\text{Reg}^t(n)] \leq O\left(\sqrt{n \ln(Ht)}\right) \]
Dataset

• 1169 anonymized undergraduate students in UCLA Mechanical and Aerospace Engineering department
Dataset

- **Selected Courses**
 - Average number of courses is 38
 - Total number of distinct courses is 811.
 - 759 of them are taken by less than 10% of the students
Finding 1: Students with higher SAT also obtain higher final GPA
Finding 2: SAT Math is a better predictor, compared with Verbal and Writing.
Finding 3: Students’ high school GPA is almost *not correlated* with final GPA.
Correlated Courses

- Matrix factorization results (K = 20, K = 5)
Correlated Courses: Case Study

• MAE 182A (Mathematics of Engineering)
 • Correlated courses according to prerequisites: MATH 31B, MATH 32A, MATH 33A, MATH 33B
Correlated Courses: Case Study

- MAE 182A (Mathematics of Engineering)
 - Our method discovers additional correlated courses: CHEM 20BH, EE 110L, MAE 102, MAE 105A, PHYS 1A

MAE 105A is correlated with MAE 182A
MAE 105D is not as correlated
Prediction Performance

• Base vs Our Ensemble
 • Base predictors are implemented using linear regression, logistic regression, random forest, kNN

MAE 182A
Prediction Performance

• Base vs Our Ensemble
 • Base predictors are implemented using linear regression, logistic regression, random forest, kNN

EE 110L
Prediction Performance

• Benchmarks using different input features
 • Same department only
 • Only courses offered by same department
 • Direct prerequisite only
 • Series of prerequisite
 • Include prerequisites of prerequisites
Prediction Performance

![Graph showing prediction performance with various error metrics over time. The graph includes different line styles representing different conditions: Same Department Only, Direct Pre-Requisite Only, Series of Pre-Requisites, and Course Clustering. The Mean Square Error (MSE) is plotted against time in quarters. The MAE 182A notation is visible on the graph.]
Prediction Performance

EPIE

Discover Relationships Among Courses (Prerequisites)
Degree Recommendation
Course Recommendation
Curriculum Design
Student Tracking
Admission Policies
Discover Mentors
Predict Dropout
Personalized Computerized Tutoring

http://medianetlab.ee.ucla.edu/EduAdvance