van der Schaar Lab

Responding to COVID-19 with AI and machine learning

Today I published a perspective paper on COVID-19. The paper is co-authored with members of the Cambridge Centre for AI in Medicine (which I recently founded and I am directing), and calls on governments and healthcare authorities to use proven AI and machine learning techniques and existing data to coordinate a response to the disease.

If you’d like to ask me about the paper or discuss it further, please leave a question/comment below, and I’ll get back to you. I’ve also provided a link to the full paper at the bottom of this post.

Both the UK and the international community are still in the early stages of a crisis that will see an unbelievable amount of pressure put on social and healthcare infrastructure. Ventilators and ICU beds will be in short supply, and the time of clinical professionals will be stretched across too many patients to cover. This will lead to unfortunate but necessary decisions. Life-and-death choices will be made, and often.

AI and machine learning can use data to make objective and informed recommendations, and can help ensure that scarce resources are allocated as efficiently as possible. Doing so will save lives and can help reduce the burden on healthcare systems and professionals.

Our paper goes into detail about specific challenges faced by healthcare systems, and how AI and machine learning can improve decision-making to ensure the best outcomes possible. I’ll avoid going into too much detail (the paper is linked at the end of this post), but here’s a summary.

1. Managing limited resources

AI and machine learning can help us identify people who are at highest risk of being infected by the novel coronavirus. This can be done by integrating electronic health record data with a multitude of “big data” pertaining to human-to-human interactions (from cellular operators, traffic, airlines, social media, etc.). This will make allocation of resources like testing kits more efficient, as well as informing how we, as a society, respond to this crisis over time.

AI and machine learning can also help us work out which infected patients are more likely to suffer more severely from COVID-19. We can provide more accurate patient risk scores that will help clinical professionals decide who needs urgent treatment (and resources), and when.

No alt text provided for this image

2. Developing a personalized treatment course for each patient 

As mentioned above, COVID-19 symptoms and disease evolution vary widely from patient to patient in terms of severity and characteristics. A one-size-fits-all approach for treatment doesn’t work. We also are a long way off from mass-producing a vaccine. 

Machine learning techniques can help determine the most efficient course of treatment for each individual patient on the basis of observational data about previous patients, including their characteristics and treatments administered. We can use machine learning to answer key “what-if” questions about each patient, such as “What if we postpone a couple hours before putting them on a ventilator?” or “Would the outcome for this patient be better if we switched them from supportive care to an experimental treatment earlier?”

3. Informing policies and improving collaboration

We have seen a huge variety of approaches taken by decision-makers when deciding on policies to respond to COVID-19. This is true from the individual level (i.e. practitioners) all the way up to the government level. For example, differences in triaging protocols used by medical institutions and practitioners could mean that two patients with similar profiles will end up receiving different types of treatment depending on where they happen to live.

It’s hard to get a clear sense of which decisions result in the best outcomes. In such a stressful situation, it’s also hard for decision-makers to be aware of the outcomes of decisions being made by their counterparts elsewhere. 

Once again, data-driven AI and machine learning can provide objective and usable insights that far exceed the capabilities of existing methods. We can gain valuable insight into what the differences between policies are, why policies are different, which policies work better, and how to design and adopt improved policies. 

This information can be shared between decision-makers at all levels, improving consistency and efficiency across the board. The result is that routine decisions can be made in a more coordinated and timely way, freeing up valuable medical attention to the cases that demand real-time expertise.

No alt text provided for this image

4. Managing uncertainty

We still know very little about the COVID-19 pandemic, and the virus itself may continue to change over time. We may not be able to rely on the data from decisions and outcomes taken in other countries (China, Iran, South Korea, Italy, etc.), as those may generalize poorly to other countries like the UK or the US. In the meantime, unproven hypotheses about the disease are likely to propagate online, impacting individual behaviour and causing systemic risks.

We can use an area of machine learning called transfer learning to account for differences between populations, substantially eliminating bias while still extracting usable data that can be applied from one population to another. 

We can also use methods to make us aware of the degree of uncertainty of any given conclusion or recommendation generated from machine learning. This means that decision-makers can be provided with confidence estimates that tell them how confident they can be about a recommended course of action.

5. Expediting clinical trials

Randomized clinical trials (RCTs) are generally used to judge the relative effectiveness of a new treatment. However, these trials can be slow and costly, and may fail to uncover specific subgroups for which a treatment may be most effective. A specific problem posed by COVID-19 is that subjects selected for RCTs tend not to be elderly, or to have other conditions; as we know, COVID-19 has a particularly severe impact on both those patient groups. 

Rather than recruiting and assigning subjects at random, machine learning methods can recruit subjects from identifiable subgroups, and assign them to treatment or control groups in a way that speeds up learning. These methods have been shown to significantly reduce error and achieve a prescribed level of confidence in findings, while also requiring fewer subjects. We can also use machine learning to target particular treatments to specific subgroups and to understand what treatments are suitable for the population as a whole.

These techniques are proven, and should be implemented without delay

The AI and machine learning techniques I’ve mentioned above do not require further peer review or further testing. Many have already been implemented on a smaller scale in real-world settings. They are essentially ready to go, with only slight adaptations required.

The data to support these techniques already exists in the UK and many other countries. There is a wealth of information we can get from electronic health records and emergency call databases, as well as “big data” for human-to-human interactions. We simply need to be able to integrate this information on a national, hospital and individual level.

No alt text provided for this image

My fellow authors and I call upon the governments of the UK and other nations to implement the above techniques as soon as possible. We also extend our support in the form of technologies, resources and knowledge to assist with their implementation. If we act now, we may be able to have these systems in place before our healthcare infrastructure is overwhelmed. Doing so will save lives.

You can read the full paper here.

Mihaela van der Schaar

Mihaela van der Schaar is the John Humphrey Plummer Professor of Machine Learning, Artificial Intelligence and Medicine at the University of Cambridge and a Fellow at The Alan Turing Institute in London.

Mihaela has received numerous awards, including the Oon Prize on Preventative Medicine from the University of Cambridge (2018), a National Science Foundation CAREER Award (2004), 3 IBM Faculty Awards, the IBM Exploratory Stream Analytics Innovation Award, the Philips Make a Difference Award and several best paper awards, including the IEEE Darlington Award.

In 2019, she was identified by National Endowment for Science, Technology and the Arts as the most-cited female AI researcher in the UK. She was also elected as a 2019 “Star in Computer Networking and Communications” by N²Women. Her research expertise span signal and image processing, communication networks, network science, multimedia, game theory, distributed systems, machine learning and AI.

Mihaela’s research focus is on machine learning, AI and operations research for healthcare and medicine.