van der Schaar Lab

The vanderschaar-lab presents “the map of causal deep learning (CDL)” as a way to formalise and categorise the many methods proposed under the causal deep learning name. By combining a structural scale as well as a parametric scale, the map bridges two worlds: causality and deep learning, respectively.

Our map is proposed as a living paper. This means that we welcome discussion and suggestions from the broader community. In the future, we will facilitate this through an online forum as well as an interactive version of our map.

We look forward to what the future of CDL holds!

In the meantime we refer to our research pillar on the topic where we introduced a “rung 1.5” to Pearl’s ladder of causation:

Jeroen Berrevoets

Jeroen Berrevoets joined the van der Schaar Lab from the Vrije Universiteit Brussel (VUB). Prior to this, he analyzed traffic data at 4 of Belgium’s largest media outlets and performed structural dynamics analysis at BMW Group in Munich.

As a PhD student in the van der Schaar Lab, Jeroen plans to explore the potential of machine learning in aiding medical discovery, rather than simply applying it to non-obvious predictions. His main research interests involve using machine learning and causal inference to gain understanding of various diseases and medications.

Much of this draws from his firmly-held belief that, “while learning to predict, machine learning models captivate some of the underlying dynamics and structure of the problem. Exposing this structure in fields such as medicine, could prove groundbreaking for disease understanding, and consequentially drug discovery.”

Jeroen’s studentship is supported under the W. D. Armstrong Trust Fund. He will be supervised jointly by Mihaela van der Schaar and Dr. Eoin McKinney.

Krzysztof Kacprzyk

Krzysztof graduated with an M.Sc. in Mathematical Sciences at the University of Oxford, where he studied statistics, geometry and quantum computing. His dissertation was devoted to optimization algorithms for the generalized multi-armed bandit problem. Before moving to Oxford, he completed his B.Sc. in Mathematics at University College London.

In his second year of undergraduate study, Krzysztof was awarded funding from EPSRC to conduct research in mathematical modelling, during which he designed a biomechanical model for rice seedling emergence. Later, as an Oxford AI Society member, he investigated bias, fairness and privacy issues in computer vision algorithms and presented his findings at the ICLR workshop on Synthetic Data Generation.

Krzysztof is driven to explore ways for machine learning to aid scientific discovery, especially in pharmacology. He is particularly interested in combining data from clinical trials with data from electronic health records to suggest better treatments for patients.

In his leisure time, Krzysztof enjoys playing the piano, building robots, juggling and performing yo-yo tricks.

Krzysztof’s research is supported by funding from Roche.

Zhaozhi Qian

After obtaining a MSc in Machine Learning at UCL, Zhaozhi Qian started his career as a data scientist in the largest mobile gaming company in Europe. Three years later, he found it might be more fulfilling to apply AI to cure cancer than to make the gamers hit the purchase button 1% more often.

He thus joined the group in 2019 as a PhD student focusing on robust and interpretable learning for longitudinal data. So far, his work has included inferring latent disease interaction networks from Electronic Health Records, uncovering the causal structure between events that unfold over time, and calibrating the predictive uncertainty under domain shift.

Zhaozhi also worked as a contractor in the NHS during the COVID-19 pandemic contributing his analytical skills to the national response to the pandemic.

Mihaela van der Schaar

Mihaela van der Schaar is the John Humphrey Plummer Professor of Machine Learning, Artificial Intelligence and Medicine at the University of Cambridge and a Fellow at The Alan Turing Institute in London.

Mihaela has received numerous awards, including the Oon Prize on Preventative Medicine from the University of Cambridge (2018), a National Science Foundation CAREER Award (2004), 3 IBM Faculty Awards, the IBM Exploratory Stream Analytics Innovation Award, the Philips Make a Difference Award and several best paper awards, including the IEEE Darlington Award.

In 2019, she was identified by National Endowment for Science, Technology and the Arts as the most-cited female AI researcher in the UK. She was also elected as a 2019 “Star in Computer Networking and Communications” by N²Women. Her research expertise span signal and image processing, communication networks, network science, multimedia, game theory, distributed systems, machine learning and AI.

Mihaela’s research focus is on machine learning, AI and operations research for healthcare and medicine.